Linear Algebra

Elijah Renner October 14, 2024

Contents

1 Basis Vectors

The standard basis vectors in three dimensions and their coordinates are:

 $\hat{\mathbf{i}} = (1, 0, 0), \quad \hat{\mathbf{j}} = (0, 1, 0), \quad \hat{\mathbf{k}} = (0, 0, 1)$ $\hat{\mathbf{i}} =$ $\sqrt{ }$ \perp 1 0 0 1 $\vert \, , \, \, \hat{\mathbf{j}} =$ $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 0 l. $\vert , \quad \hat{\mathbf{k}} =$ $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 0 1 T $\overline{1}$

This means they can also be expressed as 3D vectors. We say a vector is *n*−dimensional if it has *n* entries. We can also indicate a vector \vec{v} is *n*−dimensional by saying $\vec{v} \in \mathbb{R}^n$. Here, our basis vectors are in \mathbb{R}^3 .

Let's expand our definition of standard basis vectors to \mathbb{R}^n :

Consider a vector \vec{v} in \mathbb{R}^n . The standard basis vectors in \mathbb{R}^n are:

$$
\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \vec{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.
$$

2 Matrices as Linear Transformations

Let $T: \mathbb{R}^n \to \mathbb{R}^{m_1}$ $T: \mathbb{R}^n \to \mathbb{R}^{m_1}$ $T: \mathbb{R}^n \to \mathbb{R}^{m_1}$ be a linear transformation. The matrix $A \in \mathbb{R}^{m \times n}$ representing T can be formed as follows:

• Let ${\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}}$ be the standard basis vectors in \mathbb{R}^n .

$$
\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \vec{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.
$$

• Apply the linear transformation *T* to each basis vector:

$$
T(\vec{e}_1), T(\vec{e}_2), \ldots, T(\vec{e}_n).
$$

• Form the matrix *A* by placing the transformed basis vectors as columns:

$$
A = \begin{pmatrix} | & | & | \\ T(\vec{e}_1) & T(\vec{e}_2) & \cdots & T(\vec{e}_n) \\ | & | & | & | \end{pmatrix}.
$$

- The *i*-th column of *A* is $T(\vec{e}_i)$.
- For any vector $\vec{x} \in \mathbb{R}^n$,

$$
\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n,
$$

we have:

$$
T(\vec{x}) = T(x_1\vec{e}_1 + x_2\vec{e}_2 + \cdots + x_n\vec{e}_n) = x_1T(\vec{e}_1) + x_2T(\vec{e}_2) + \cdots + x_nT(\vec{e}_n).
$$

This is equivalent to:

 $T(\vec{x}) = A\vec{x}.$

3 Linear Combinations

Any vector $\vec{v} \in \mathbb{R}^n$ with components (v_1, v_2, \ldots, v_n) can be written as:

$$
\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}.
$$

This vector can be expressed as a linear combination of the basis vectors:

$$
\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2 + \dots + v_n \vec{e}_n.
$$

For example, in \mathbb{R}^3 , the vector \vec{v} with components (v_1, v_2, v_3) can be written as:

$$
\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
$$

¹This notation means that *T* is a mapping from $\mathbb R$ to $\mathbb R$

4 Span of Vectors

The span of a set of vectors is the set of all possible linear combinations of those vectors. If you have a set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$, the span of these vectors is denoted as $\text{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k)$ and is defined as:

 $\text{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k) = \{a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_k\vec{v}_k \mid a_1, a_2, \dots, a_k \in \mathbb{R}\}.$

This set includes all vectors that can be formed by taking linear combinations of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$.

Note: if two vectors \vec{v} and \vec{k} are colinear, their span is a line.

5 Colinearity

A vector \vec{v} is colinear with \vec{k} if $\vec{v} = a\vec{k}$ for some scalar *a*.

6 Linear Independence and Dependence

6.1 Linear Independence

A set of vectors ${\lbrace \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \rbrace}$ is said to be linearly independent if no vector in the set can be written as a linear combination of the others. Formally, the vectors are linearly independent if the only solution to the equation

 $a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k = \vec{0}$

is $a_1 = a_2 = \cdots = a_k = 0$. This means that the only way to get the zero vector using a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ is by setting all the coefficients to zero.

6.2 Linear Dependence

A set of vectors $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ is said to be linearly dependent if at least one vector in the set can be written as a linear combination of the others. Formally, the vectors are linearly dependent if there exists a non-trivial solution (that is, a nonzero one) to the equation

$$
a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k = \vec{0}.
$$

This means that there are some non-zero coefficients that can be used to express the zero vector as a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$.

7 Row Operations of Matrices

Row operations are used to manipulate matrices, especially for solving linear systems and performing Gaussian elimination. There are three types of row operations:

1. **Row Switching:** Swap the positions of two rows. Symbol: ⇔ Example: Switch row *i* with row *j*.

$$
\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix} \xrightarrow{\text{switch } R_1 \text{ and } R_2} \begin{pmatrix} 4 & 5 & 6 \ 1 & 2 & 3 \ 7 & 8 & 9 \end{pmatrix}
$$

2. **Row Multiplication:** Multiply all elements of a row by a nonzero scalar. Example: Multiply row *i* by $c \neq 0$.

$$
\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix} \xrightarrow{\text{multiply } R_2 \text{ by } 2} \begin{pmatrix} 1 & 2 & 3 \ 8 & 10 & 12 \ 7 & 8 & 9 \end{pmatrix}
$$

Prepared by Elijah

3. **Row Addition:** Add or subtract the elements of one row to/from another row. Example: Add *c* times row *i* to row *j*.

$$
\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix} \xrightarrow{\text{add } 2R_1 \text{ to } R_2} \begin{pmatrix} 1 & 2 & 3 \ 6 & 9 & 12 \ 7 & 8 & 9 \end{pmatrix}
$$

8 Matrix Multiplication

When multiplying matrix *B* by matrix *A* (*AB*), *A* must have the same number of columns as the number of rows in *B*.