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1 About Today’s Notes

Since we didn’t cover any new content Wednesday, I’m compiling all key information for the
midterm here.

2 Identities

2.1 Pythagorean Identities

We first derive the identity cos2 θ + sin2 θ = 1 from the unit circle.
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Identity.png

Figure 1: Credit: https://trigidentities.info/pythagorean-trig-identities

Then, the other two Pythagorean identities are derived by dividing by either cos2 or sin2:

To derive tan2 θ + 1 = sec2 θ, divide the original identity by cos2 θ:

cos2 θ + sin2 θ = 1

cos2 θ
=⇒ cos2 θ

cos2 θ
+

sin2 θ

cos2 θ
=

1

cos2 θ
=⇒ tan2 θ + 1 = sec2 θ

To derive cot2 θ + 1 = csc2 θ, divide the original identity by sin2 θ:

cos2 θ + sin2 θ = 1

sin2 θ
=⇒ cos2 θ

sin2 θ
+

sin2 θ

sin2 θ
=

1

sin2 θ
=⇒ cot2 θ + 1 = csc2 θ

To summarize, the three Pythagorean identities are

1. cos2 θ + sin2 θ = 1

2. tan2 θ + 1 = sec2 θ

3. cot2 θ + 1 = csc2 θ

2.2 Sum and Difference Formulas

The sum and difference formulas allow us to evaluate the trigonometric functions of angles
whos reference angles aren’t 30, 45, 60, or 90:

sin(A± B) = sinA · cosB ± cosA · sinB

cos(A± B) = cosA · cosB ∓ sinA · sinB
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There is a formula for tan(A ± B), which isn’t necessary to remember, as it can be de-

rived from sin(A±B)
cos(A±B)

since tan θ = sin θ
cos θ

. The same follows for csc(A ± B) = 1
sin(A±B)

,

sec(A± B) = 1
csc(A±B)

, and cot(A± B) = cos(A±B)
sin(A±B)

.

Regardless,

tan(A± B) =
tanA± tanB

1∓ tanA · tanB
.
Also, ∓ indicates the opposite sign of whichever sign is chosen as ±.

2.3 Double Angle Formulas

To derive the double angle formulas, we start with the angle familiar sum identities.

2.3.1 Sine

The angle sum identity for sine is:

sin(A+B) = sinA cosB + cosA sinB

By setting A = B = θ, we get:

sin(2θ) = sin(θ + θ) = sin θ cos θ + cos θ sin θ

Simplify this by combining like terms:

sin(2θ) = 2 sin θ cos θ

2.3.2 Cosine

The angle sum identity for cosine is:

cos(A+B) = cosA cosB − sinA sinB

By setting A = B = θ, we get:

cos(2θ) = cos(θ + θ) = cos θ cos θ − sin θ sin θ

Simplify this by combining like terms:

cos(2θ) = cos2 θ − sin2 θ

Using the Pythagorean identity sin2 θ+cos2 θ = 1, we can derive alternative forms of cos(2θ):
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1. Express cos2 θ in terms of sin2 θ:

cos2 θ = 1− sin2 θ

Substitute this into the double angle formula for cosine:

cos(2θ) = (1− sin2 θ)− sin2 θ = 1− 2 sin2 θ

2. Express sin2 θ in terms of cos2 θ:

sin2 θ = 1− cos2 θ

Substitute this into the double angle formula for cosine:

cos(2θ) = cos2 θ − (1− cos2 θ) = 2 cos2 θ − 1

So, we have three equivalent forms of cos(2θ):

cos(2θ) = cos2 θ − sin2 θ = 1− 2 sin2 θ = 2 cos2 θ − 1

These derivations give us the double angle formulas for sine and cosine:

sin(2θ) = 2 sin θ cos θ

cos(2θ) = cos2 θ − sin2 θ

= 1− 2 sin2 θ

= 2 cos2 θ − 1

Nice!

2.4 Half Angle Formulas

The half angle formulas for sin and cos are

sin2 θ =
1

2
(1− cos(2θ)) =⇒ sin θ = ±

󰁵
1

2
(1− cos(2θ)) = ±

󰁵
1− cos(2θ)

2

cos2 θ =
1

2
(1 + cos(2θ)) =⇒ cos θ = ±

󰁵
1

2
(1 + cos(2θ)) = ±

󰁵
1 + cos(2θ)

2

To derive the half-angle formula for tan, we use the half-angle formulas for sin and cos:

tan θ =
sin θ

cos θ
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Using the half-angle formulas:

sin θ = ±
󰁵

1− cos(2θ)

2

cos θ = ±
󰁵

1 + cos(2θ)

2

So,

tan θ =
sin θ

cos θ
=

±
󰁴

1−cos(2θ)
2

±
󰁴

1+cos(2θ)
2

Since both the numerator and the denominator have the same sign, the signs cancel out:

tan θ =

󰁵
1− cos(2θ)

2
÷

󰁵
1 + cos(2θ)

2
=

󰁶
1− cos(2θ)

1 + cos(2θ)

Thus, the half-angle formula for tan is:

tan θ =

󰁶
1− cos(2θ)

1 + cos(2θ)

3 Polynomial Behavior

If a factor (x− a) appears an even amount of times, the function will touch the x-axis when
x = a.

Conversely, if (x − a) appears an odd amount of times, the function will cross the x-axis
when x = a:
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touching.png

Figure 2: Credit: https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:
poly-graphs/x2ec2f6f830c9fb89:poly-intervals/a/zeros-of-polynomials-and-their-graphs

4 Quadrant of Manipulated Angle

Problem: if angle θ is in quadrant four, which quadrant is θ
2
in?

We know that a point on an axis is not in a quadrant, so the range of θ is 270◦ < θ < 360◦

or 3π
2
< θ < 2π. To find the range of θ

2
, treat 3π

2
< θ < 2π as an inequality.

Recall that we can divide each part of an inequality by a non-negative number without
changing its sides. So, we’ll divide by 2 to get θ

2
in the center:

3π

4
<

θ

2
< π

Since this range is in quadrant two, we know θ
2
must be in quadrant two.
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5 Absolute Value Equations

Value Equations Image.gif

Figure 3: Credit: https://superbiamk.shop/product details/85110602.html

6 Root Equations

Functions Screenshot Aug 26.png

Figure 4: Credit: https://amandapaffrath.weebly.com/square-root-functions.html
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7 Sinusoidal Functions

Figure 5: Credit: https://www.youtube.com/watch?v=AS7THLj-OhI
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8 Domain

8.1 Domain of Root Functions

Figure 6: Credit: myself

8.2 Domain of Polynomials

All n-th degree polynomials in the form anx
n + an−1x

n−1...+ a2x
2 + a1x+ a0 are defined for

all x ∈ R.

8.3 Domain of Rational Functions

Rational functions f(x)
p(x)

are defined for all values where p(x) ∕= 0.
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8.4 Domain of Added, Subtracted, Multiplied, and Divided Func-
tions

Figure 7: Credit: myself

8.5 Domain of Composed Functions

Here’s a review of set builder notation:
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Figure 8: Credit: https://www.cuemath.com/algebra/set-builder-notation/

Domain(g ◦ f) = {x ∈ Domain(g) | g(x) ∈ Domain(f)}

9 Limit Definition of the Derivative

The derivative (or instantaneous rate of change) of a function f at a point x = a is defined
by the limit:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

10 Rationalizing Numerator and Denominator

Figure 9: Credit: myself
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11 Inverse Functions

11.1 Finding Inverses

Given a function f(x), we denote its inverse as f−1(x). To find the inverse of f(x):

1. Replace f(x) with y.

2. Switch y and x.

3. Solve for y.

4. Replace y with f−1(x)

Here’s an example:

Problem: Let f(x) = x2 + 3. Find f−1(x).

Replace f(x) with y: f(x) = x2 + 3 =⇒ y = x2 + 3

Switch x and y: y = x2 + 3 =⇒ x = y2 + 3

Solve for y: x = y2 + 3 =⇒ y2 = x− 3 =⇒ y =
√
x− 3

Replace y with f−1(x): f−1(x) =
√
x− 3

Now we know f−1(x) =
√
x− 3.

11.2 Properties of Inverses

A cool property of inverse functions is that f(x) and f−1(x) reflect over the line y = x:

Figure 10: Credit: https://youtu.be/TN4ybFiuV3k
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This makes sense because we are switching x and y.

Another property of f−1 is that its domain and range are the range and domain respectfully
of f . More formally:

domain(f) = range(f−1)

range(f) = domain(f−1)

12 Review of Linear Functions

To find the slope of a line given two points, we use slope = m = ∆y
∆x

. Given two points
(x1, y1) and (x2, y2), we can calculate the slope using

y1 − y2
x1 − x2

If we a line’s slope m and a point (x1, y1) on the line, we can write its equation as

y − y1 = m(x− x1)

Some rules:
A line parallel to a line with slope m will have slope m
A line perpendicular to a line with slope m will have slope − 1

m

A line written in the form Ax+By = C will have slope m = −A
B
and y-intercept b = C

B
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13 End Behaviors

Figure 11: Credit: https://youtu.be/7LnsYtCfkXQ?si=Iq8WqdaHbLvWcLC0

14 Transformations of Functions

Here’s a helpful graphic about transforming functions:

Figure 12: Credit:
https://lzinnick.weebly.com/transformations-of-functions-and-graphs.html
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15 Special Triangles

Figure 13: Credit: https://www.onlinemathlearning.com/special-right-triangles.html

16 All Students Take Calculus

”All Students Take Calculus.” tells us which trig functions are positive in each quadrant.

Figure 14: Credit: https://www.onemathematicalcat.org
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17 Finding the Radius and Center of Circle by Com-

pleting the Square

Figure 15: Credit: https://www.mashupmath.com/blog/complete-the-square-formula

Figure 16: Credit: https://www.showme.com/sh/?h=nFTWVUG

18 Converting Between Radians and Degrees

Here are the methods for converting between radians and degrees:
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Radians = Degrees× π

180

Degrees = Radians× 180

π

19 Reference Angles

We define reference angles as the smallest, positive, acute angle formed by the terminal side
of an angle and the x-axis on a coordinate plane:

Figure 17: Credit: https://mathmonks.com/angle/reference-angle

20 Vertex of Quadratic

Let f(x) = ax2 + bx+ c where a, b, and c are constants. The vertex of f will always be

󰀕
−b

2a
, f

󰀕
−b

2a

󰀖󰀖

21 Factoring Higher-Degree Polynomials

Let’s suppose we have the equation 8x3 + x+ 9=0. The left side isn’t easily factorable and
can’t be plugged into the quadratic formula. Instead, we can find the possible rational zeros
of the expression.
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Let f(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0 where a are integers. Here,

possible rational zeros =
factors of a0 (last term)

factors of an(first term)

Hence, the possible rational zeroes of 8x3 + x+9 are ± 1,3,9
1,2,4,8

= ±1
8
,±1

4
,±3

8
,±1

2
,±3

4
,±1,±9

8
,

±3
2
,±9

4
,±9

2
,±3,±9.

Personally, I like to start with integers. We can manually plug possible rational zeros in as
x. However, there’s a trick to quickly evaluate polynomials at a certain value x. This isn’t
easily explained in writing, so here’s a helpful video from the Organic Chemistry tutor.

Just remember that if f(a) = 0 than (x− a) is a factor of f .

22 Intersection and Union

The union is the combination of two sets, while the intersection is the overlap between two
sets.

Figure 18: Credit: https://www.youtube.com/watch?v=sdflTUW6gHo
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