MATH1034OL1 Pre-Calculus Mathematics Midterm Review (Wednesday)

Elijah Renner

August 2, 2024

Contents

1	About Today's Notes	1
2	Identities2.1Pythagorean Identities2.2Sum and Difference Formulas2.3Double Angle Formulas2.3.1Sine2.3.2Cosine2.4Half Angle Formulas	1 1 2 3 3 3 4
3	Polynomial Behavior	5
4	Quadrant of Manipulated Angle	6
5	Absolute Value Equations	7
6	Root Equations	7
7	Sinusoidal Functions	8
8	Domain8.1Domain of Root Functions8.2Domain of Polynomials8.3Domain of Rational Functions8.4Domain of Added, Subtracted, Multiplied, and Divided Functions8.5Domain of Composed Functions	9 9 9 9 10 10

9	Limit Definition of the Derivative	11
10	Rationalizing Numerator and Denominator	11
11	Inverse Functions11.1 Finding Inverses11.2 Properties of Inverses	12 12 12
12	Review of Linear Functions	13
13	End Behaviors	14
14	Transformations of Functions	14
15	Special Triangles	15
16	All Students Take Calculus	15
17	Finding the Radius and Center of Circle by Completing the Square	16
18	Converting Between Radians and Degrees	16
19	Reference Angles	17
20	Vertex of Quadratic	17
21	Factoring Higher-Degree Polynomials	17
22	Intersection and Union	18

1 About Today's Notes

Since we didn't cover any new content Wednesday, I'm compiling all key information for the midterm here.

2 Identities

2.1 Pythagorean Identities

We first derive the identity $\cos^2 \theta + \sin^2 \theta = 1$ from the unit circle.

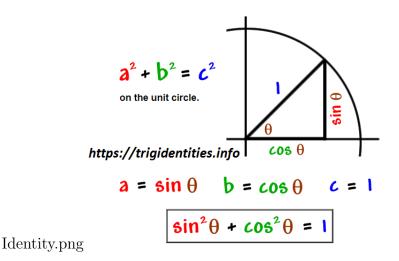


Figure 1: Credit: https://trigidentities.info/pythagorean-trig-identities

Then, the other two Pythagorean identities are derived by dividing by either \cos^2 or \sin^2 : To derive $\tan^2 \theta + 1 = \sec^2 \theta$, divide the original identity by $\cos^2 \theta$:

$$\frac{\cos^2\theta + \sin^2\theta = 1}{\cos^2\theta} \implies \frac{\cos^2\theta}{\cos^2\theta} + \frac{\sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta} \implies \tan^2\theta + 1 = \sec^2\theta$$

To derive $\cot^2 \theta + 1 = \csc^2 \theta$, divide the original identity by $\sin^2 \theta$:

$$\frac{\cos^2\theta + \sin^2\theta = 1}{\sin^2\theta} \implies \frac{\cos^2\theta}{\sin^2\theta} + \frac{\sin^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta} \implies \cot^2\theta + 1 = \csc^2\theta$$

To summarize, the three Pythagorean identities are

- 1. $\cos^2 \theta + \sin^2 \theta = 1$
- 2. $\tan^2 \theta + 1 = \sec^2 \theta$
- 3. $\cot^2 \theta + 1 = \csc^2 \theta$

2.2 Sum and Difference Formulas

The sum and difference formulas allow us to evaluate the trigonometric functions of angles whos reference angles aren't 30, 45, 60, or 90:

$$\sin(A \pm B) = \sin A \cdot \cos B \pm \cos A \cdot \sin B$$

$$\cos(A \pm B) = \cos A \cdot \cos B \mp \sin A \cdot \sin B$$

There is a formula for $\tan(A \pm B)$, which isn't necessary to remember, as it can be derived from $\frac{\sin(A\pm B)}{\cos(A\pm B)}$ since $\tan \theta = \frac{\sin \theta}{\cos \theta}$. The same follows for $\csc(A \pm B) = \frac{1}{\sin(A\pm B)}$, $\sec(A \pm B) = \frac{1}{\csc(A\pm B)}$, and $\cot(A \pm B) = \frac{\cos(A\pm B)}{\sin(A\pm B)}$.

Regardless,

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \cdot \tan B}$$

Also, \mp indicates the opposite sign of whichever sign is chosen as \pm .

2.3 Double Angle Formulas

To derive the double angle formulas, we start with the angle familiar sum identities.

2.3.1 Sine

The angle sum identity for sine is:

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

By setting $A = B = \theta$, we get:

$$\sin(2\theta) = \sin(\theta + \theta) = \sin\theta\cos\theta + \cos\theta\sin\theta$$

Simplify this by combining like terms:

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

2.3.2 Cosine

The angle sum identity for cosine is:

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

By setting $A = B = \theta$, we get:

$$\cos(2\theta) = \cos(\theta + \theta) = \cos\theta\cos\theta - \sin\theta\sin\theta$$

Simplify this by combining like terms:

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

Using the Pythagorean identity $\sin^2 \theta + \cos^2 \theta = 1$, we can derive alternative forms of $\cos(2\theta)$:

1. Express $\cos^2 \theta$ in terms of $\sin^2 \theta$:

$$\cos^2\theta = 1 - \sin^2\theta$$

Substitute this into the double angle formula for cosine:

$$\cos(2\theta) = (1 - \sin^2\theta) - \sin^2\theta = 1 - 2\sin^2\theta$$

2. Express $\sin^2 \theta$ in terms of $\cos^2 \theta$:

$$\sin^2\theta = 1 - \cos^2\theta$$

Substitute this into the double angle formula for cosine:

$$\cos(2\theta) = \cos^2\theta - (1 - \cos^2\theta) = 2\cos^2\theta - 1$$

So, we have three equivalent forms of $\cos(2\theta)$:

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 1 - 2\sin^2\theta = 2\cos^2\theta - 1$$

These derivations give us the double angle formulas for sine and cosine:

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$
$$= 1 - 2\sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$

Nice!

2.4 Half Angle Formulas

The half angle formulas for sin and cos are

$$\sin^2 \theta = \frac{1}{2} (1 - \cos(2\theta)) \implies \sin \theta = \pm \sqrt{\frac{1}{2} (1 - \cos(2\theta))} = \pm \sqrt{\frac{1 - \cos(2\theta)}{2}}$$
$$\cos^2 \theta = \frac{1}{2} (1 + \cos(2\theta)) \implies \cos \theta = \pm \sqrt{\frac{1}{2} (1 + \cos(2\theta))} = \pm \sqrt{\frac{1 + \cos(2\theta)}{2}}$$

To derive the half-angle formula for tan, we use the half-angle formulas for sin and cos:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Using the half-angle formulas:

$$\sin \theta = \pm \sqrt{\frac{1 - \cos(2\theta)}{2}}$$
$$\cos \theta = \pm \sqrt{\frac{1 + \cos(2\theta)}{2}}$$

So,

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\pm \sqrt{\frac{1 - \cos(2\theta)}{2}}}{\pm \sqrt{\frac{1 + \cos(2\theta)}{2}}}$$

Since both the numerator and the denominator have the same sign, the signs cancel out:

$$\tan \theta = \sqrt{\frac{1 - \cos(2\theta)}{2}} \div \sqrt{\frac{1 + \cos(2\theta)}{2}} = \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}}$$

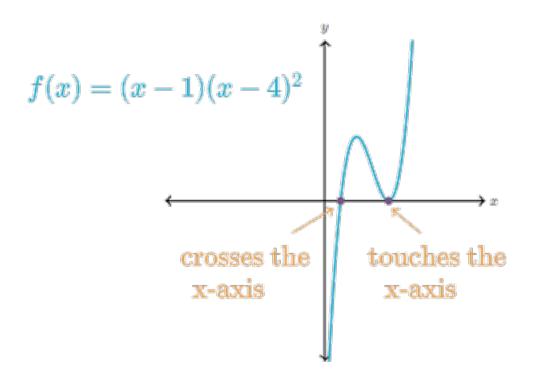
Thus, the half-angle formula for tan is:

$$\tan \theta = \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}}$$

3 Polynomial Behavior

If a factor (x - a) appears an even amount of times, the function will touch the x-axis when x = a.

Conversely, if (x - a) appears an odd amount of times, the function will cross the x-axis when x = a:



touching.png

Figure 2: Credit: https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89: poly-graphs/x2ec2f6f830c9fb89:poly-intervals/a/zeros-of-polynomials-and-their-graphs

4 Quadrant of Manipulated Angle

Problem: if angle θ is in quadrant four, which quadrant is $\frac{\theta}{2}$ in?

We know that a point on an axis is not in a quadrant, so the range of θ is $270^{\circ} < \theta < 360^{\circ}$ or $\frac{3\pi}{2} < \theta < 2\pi$. To find the range of $\frac{\theta}{2}$, treat $\frac{3\pi}{2} < \theta < 2\pi$ as an inequality.

Recall that we can divide each part of an inequality by a non-negative number without changing its sides. So, we'll divide by 2 to get $\frac{\theta}{2}$ in the center:

$$\frac{3\pi}{4} < \frac{\theta}{2} < \tau$$

Since this range is in quadrant two, we know $\frac{\theta}{2}$ must be in quadrant two.

5 Absolute Value Equations

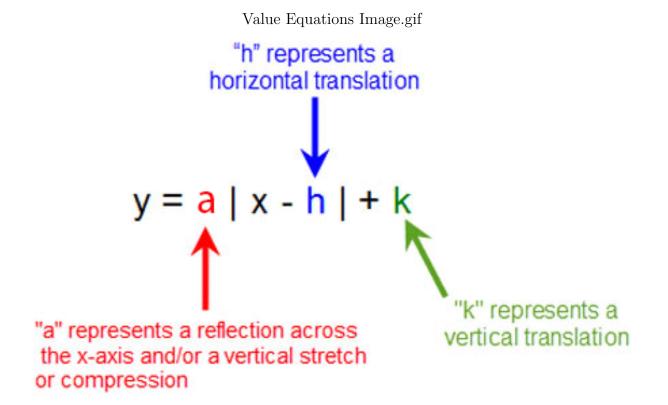
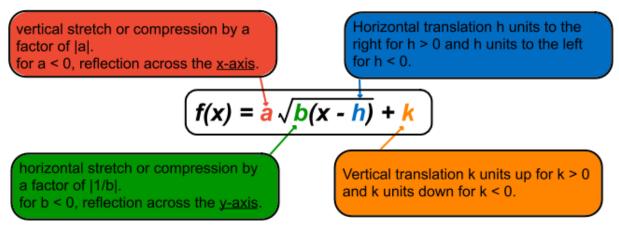


Figure 3: Credit: https://superbiamk.shop/product_details/85110602.html

6 Root Equations



Functions Screenshot Aug 26.png

Figure 4: Credit: https://amandapaffrath.weebly.com/square-root-functions.html

7 Sinusoidal Functions

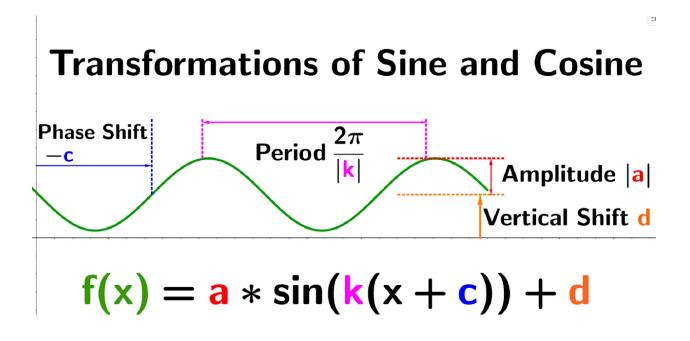


Figure 5: Credit: https://www.youtube.com/watch?v=AS7THLj-OhI

8 Domain

8.1 Domain of Root Functions

The domain of *n*-th root functions depends on whether *n* is even or odd:

1. For even n (e.g., square root, fourth root, etc.):

The *n*-th root function is defined for all non-negative values of the radicand. This is because taking an even root of a negative number is not defined in the real number system.

$$f(x) = \sqrt[n]{x}$$

Domain: $x \ge 0$

2. For odd n (e.g., cube root, fifth root, etc.):

The *n*-th root function is defined for all real numbers. This is because taking an odd root of a negative number is defined and results in a negative number.

$$f(x) = \sqrt[n]{x}$$

Domain: $x \in \mathbb{R}$ (all real numbers)

Figure 6: Credit: myself

8.2 Domain of Polynomials

All *n*-th degree polynomials in the form $a_n x^n + a_{n-1} x^{n-1} \dots + a_2 x^2 + a_1 x + a_0$ are defined for all $x \in \mathbb{R}$.

8.3 Domain of Rational Functions

Rational functions $\frac{f(x)}{p(x)}$ are defined for all values where $p(x) \neq 0$.

8.4 Domain of Added, Subtracted, Multiplied, and Divided Functions

- 1. Addition and Subtraction (f(x) + g(x) and f(x) g(x)):
 - The domain of f + g (or f g) is the intersection of the domains of f and g.
 - Mathematically: $\mathrm{Domain}(f+g) = \mathrm{Domain}(f) \cap \mathrm{Domain}(g).$
- 2. Multiplication ($f(x) \cdot g(x)$):

 - Mathematically: $\mathrm{Domain}(f \cdot g) = \mathrm{Domain}(f) \cap \mathrm{Domain}(g).$
- 3. Division $(\frac{f(x)}{g(x)})$:
 - The domain of $\frac{f}{g}$ is the intersection of the domains of fand g, excluding the points where g(x) = 0 (since division by zero is undefined).
 - Mathematically: $\operatorname{Domain}\left(rac{f}{g}
 ight) = \operatorname{Domain}(f) \cap \operatorname{Domain}(g) \{x \mid g(x) = 0\}.$

Figure 7: Credit: myself

8.5 Domain of Composed Functions

Here's a review of set builder notation:

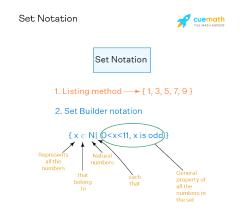


Figure 8: Credit: https://www.cuemath.com/algebra/set-builder-notation/

 $Domain(g \circ f) = \{x \in Domain(g) \mid g(x) \in Domain(f)\}\$

9 Limit Definition of the Derivative

The derivative (or instantaneous rate of change) of a function f at a point x = a is defined by the limit:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

10 Rationalizing Numerator and Denominator

Conjugates are helpful for rationalizing numerators and denominators:

2. Rationalizing the Denominator

When dealing with expressions that have radicals in the denominator, multiplying by the conjugate can rationalize the denominator.

Example:

 $\frac{1}{\sqrt{3}+1}$

Multiply the numerator and the denominator by the conjugate of the denominator:

 $\frac{1}{\sqrt{3}+1} \cdot \frac{\sqrt{3}-1}{\sqrt{3}-1} = \frac{\sqrt{3}-1}{(\sqrt{3})^2-1^2} = \frac{\sqrt{3}-1}{3-1} = \frac{\sqrt{3}-1}{2}$

Figure 9: Credit: myself

11 Inverse Functions

11.1 Finding Inverses

Given a function f(x), we denote its inverse as $f^{-1}(x)$. To find the inverse of f(x):

- 1. Replace f(x) with y.
- 2. Switch y and x.
- 3. Solve for y.
- 4. Replace y with $f^{-1}(x)$

Here's an example:

Problem: Let $f(x) = x^2 + 3$. Find $f^{-1}(x)$. Replace f(x) with y: $f(x) = x^2 + 3 \implies y = x^2 + 3$ Switch x and y: $y = x^2 + 3 \implies x = y^2 + 3$ Solve for y: $x = y^2 + 3 \implies y^2 = x - 3 \implies y = \sqrt{x - 3}$ Replace y with $f^{-1}(x)$: $f^{-1}(x) = \sqrt{x - 3}$ Now we know $f^{-1}(x) = \sqrt{x - 3}$.

11.2 Properties of Inverses

A cool property of inverse functions is that f(x) and $f^{-1}(x)$ reflect over the line y = x:

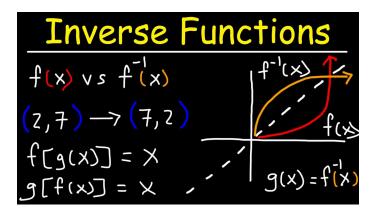


Figure 10: Credit: https://youtu.be/TN4ybFiuV3k

This makes sense because we are switching x and y.

Another property of f^{-1} is that its domain and range are the range and domain respectfully of f. More formally:

```
\operatorname{domain}(f) = \operatorname{range}(f^{-1})
```

 $\operatorname{range}(f) = \operatorname{domain}(f^{-1})$

12 Review of Linear Functions

To find the slope of a line given two points, we use $slope = m = \frac{\Delta y}{\Delta x}$. Given two points (x_1, y_1) and (x_2, y_2) , we can calculate the slope using

$$\frac{y_1 - y_2}{x_1 - x_2}$$

If we a line's slope m and a point (x_1, y_1) on the line, we can write its equation as

$$y - y_1 = m(x - x_1)$$

Some rules:

A line parallel to a line with slope m will have slope m

A line perpendicular to a line with slope m will have slope $-\frac{1}{m}$ A line written in the form Ax + By = C will have slope $m = -\frac{A}{B}$ and y-intercept $b = \frac{C}{B}$

13 End Behaviors

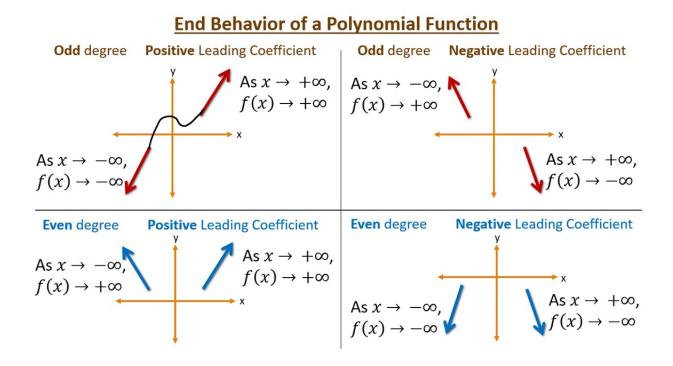
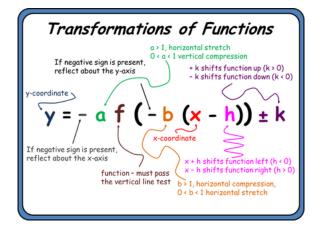


Figure 11: Credit: https://youtu.be/7LnsYtCfkXQ?si=Iq8WqdaHbLvWcLC0

14 Transformations of Functions

Here's a helpful graphic about transforming functions:



 $\label{eq:Figure 12: Credit: https://lzinnick.weebly.com/transformations-of-functions-and-graphs.html$

15 Special Triangles

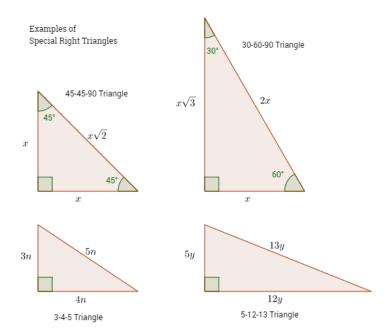


Figure 13: Credit: https://www.onlinemathlearning.com/special-right-triangles.html

16 All Students Take Calculus

"All Students Take Calculus." tells us which trig functions are positive in each quadrant.

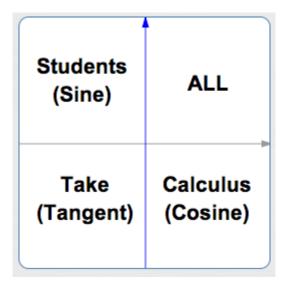


Figure 14: Credit: https://www.onemathematicalcat.org

17 Finding the Radius and Center of Circle by Completing the Square

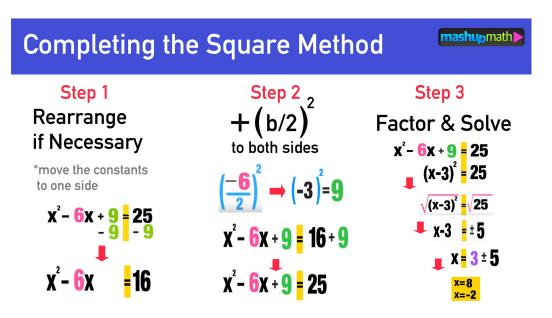


Figure 15: Credit: https://www.mashupmath.com/blog/complete-the-square-formula

Completing the Square

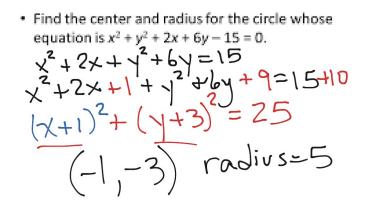


Figure 16: Credit: https://www.showme.com/sh/?h=nFTWVUG

18 Converting Between Radians and Degrees

Here are the methods for converting between radians and degrees:

Radians = Degrees
$$\times \frac{\pi}{180}$$

Degrees = Radians $\times \frac{180}{\pi}$

19 Reference Angles

We define reference angles as the smallest, positive, acute angle formed by the terminal side of an angle and the x-axis on a coordinate plane:

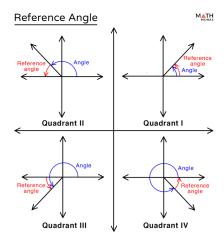


Figure 17: Credit: https://mathmonks.com/angle/reference-angle

20 Vertex of Quadratic

Let $f(x) = ax^2 + bx + c$ where a, b, and c are constants. The vertex of f will always be

$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$

21 Factoring Higher-Degree Polynomials

Let's suppose we have the equation $8x^3 + x + 9=0$. The left side isn't easily factorable and can't be plugged into the quadratic formula. Instead, we can find the possible rational zeros of the expression.

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ where a are integers. Here,

possible rational zeros = $\frac{\text{factors of } a_0 \text{ (last term)}}{\text{factors of } a_n \text{(first term)}}$

Hence, the possible rational zeroes of $8x^3 + x + 9$ are $\pm \frac{1,3,9}{1,2,4,8} = \pm \frac{1}{8}, \pm \frac{1}{4}, \pm \frac{3}{8}, \pm \frac{1}{2}, \pm \frac{3}{4}, \pm 1, \pm \frac{9}{8}, \pm \frac{3}{2}, \pm \frac{9}{4}, \pm \frac{9}{2}, \pm 3, \pm 9.$

Personally, I like to start with integers. We can manually plug possible rational zeros in as x. However, there's a trick to quickly evaluate polynomials at a certain value x. This isn't easily explained in writing, so here's a helpful video from the Organic Chemistry tutor.

Just remember that if f(a) = 0 than (x - a) is a factor of f.

22 Intersection and Union

The union is the combination of two sets, while the intersection is the overlap between two sets.

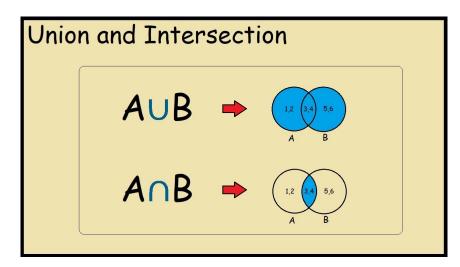


Figure 18: Credit: https://www.youtube.com/watch?v=sdflTUW6gHo