MATH1034OL1 Pre-Calculus Mathematics Notes from Sections 4.8, 3.3 (Monday)

Elijah Renner

July 26, 2024

Contents

1	Inverse Trigonometric Functions	1
2	Polynomial Long Division	3
3	Remainder Theroem	3
4	Descarte's Rule of Signs	4

1 Inverse Trigonometric Functions

The three inverse trigonometric functions are arccos, arcsin, and arctan. These functions have the property

$$\operatorname{arccos}(x) = A$$

 $\operatorname{cos}(A) = x$

In other words, cos and arccos are inverses of each other. They're helpful for determining an angle given its sin, cos, or tan value.

When we're finding $\arcsin(x)$, we restrict the range of arcsin such that it remains a function (that is, there are no two outputs $\arcsin(x)$ for one input x). We do this for all inverse

trigonometric functions. Here are the restrictions:

Figure 1: Credit: https://www.mathnstuff.com/math/spoken/here/2class/330/arc.htm

Problem: Find the Exact value of $\sec\{\arctan[\sin(\arccos(\frac{-1}{2}))]\}$.

First, recall that $\arccos(\frac{-1}{2})$ will be the angle whose cosine value is $\frac{-1}{2}$. We know this angle is $\frac{2\pi}{3}$ using the rules above.

Next, we determine that $\sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}$. This is where things get a little more complicated. $\arctan(\frac{\sqrt{3}}{2})$ isn't an angle with reference angle $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$. This is fine because, when we zoom out, we're asked to find $\sec(\arctan(\frac{\sqrt{3}}{2}))$. We know that the triangle formed by the angle $\arctan(\frac{\sqrt{3}}{2})$ has $\operatorname{opp} = \sqrt{3}$ and $\operatorname{adj} = 2$. We use the pythagorean theorem to find the hypotenuse:

$$(\sqrt{3})^2 + 2^2 = c^2$$
$$\implies c = \sqrt{3+4} = \sqrt{7}$$

Hence, hyp = $\sqrt{7}$. Even though the angle $\arctan(\frac{\sqrt{3}}{2})$ doesn't form a special triangle, we can still find its sec value using the sides of the triangle it forms:

$$\operatorname{sec}\left(\operatorname{arctan}\left(\frac{\sqrt{3}}{2}\right)\right) = \frac{\operatorname{hyp}}{\operatorname{adj}} = \frac{\sqrt{7}}{2}$$

Knowing this, $\sec\{\arctan[\sin(\arccos(\frac{-1}{2}))]\} = \frac{\sqrt{7}}{2}$.

2 Polynomial Long Division

Polynomial division isn't easily explained in notes, but it's very important!. Here is my recommended resource for polynomial division:

https://www.mathsisfun.com/algebra/polynomials-division-long.html

3 Remainder Theroem

Figure 2: Credit: https://www.cuemath.com/algebra/remainder-theorem/

4 Descarte's Rule of Signs

Descartes' Rule of Signs

Number of positive real roots of f(x) = Number of sign changes of f(x) (OR) < Number of sign changes of f(x) by even number Number of negative real roots of f(x) = Number of sign changes of f(-x) (OR) < Number of sign changes of f(-x)

Figure 3: Credit: https://www.cuemath.com/algebra/descartes-rule-of-signs/

by even number

Figure 4: Credit: https://andymath.com/descartes-rule-of-signs/